On Compact Holomorphically Pseudosymmetric Kählerian Manifolds

نویسنده

  • ZBIGNIEW OLSZAK
چکیده

For compact Kählerian manifolds, the holomorphic pseudosymmetry reduces to the local symmetry if additionally the scalar curvature is constant and the structure function is non-negative. Similarly, the holomorphic Ricci-pseudosymmetry reduces to the Ricci-symmetry under these additional assumptions. We construct examples of non-compact essentially holomorphically pseudosymmetric Kählerian manifolds. These examples show that the compactness assumption cannot be omitted in the above stated theorem. Recently, the first examples of compact, simply connected essentially holomorphically pseudosymmetric Kählerian manifolds are discovered in [4]. In these examples, the structure functions change their signs on the manifold. AMS Mathematics Subject Classification (2000) 53C55, 53C25 1. Holomorphic pseudosymmetries Let M be a 2n-dimensional Kählerian manifold with (J, g) as its Kählerian structure. Thus, J is a (1, 1)-tensor field (an almost complex structure) and g a Riemannian metric on M such that J = −I, g(J ·, J ··) = g(·, ··) and ∇J = 0, ∇ being the Levi-Civita connection of g. Let X(M) be the Lie algebra of smooth vector fields on M . For U, V ∈ X(M), let R(U, V ) = [∇U ,∇V ]−∇[U,V ] = ∇ 2 UV −∇ 2 V U be the usual curvature operator, and consider additional curvature type operator R(U, V ) defined by assuming that (1) R(U, V )X = g(V,X)U − g(U,X)V + g(JV,X)JU − g(JU,X)JV − 2g(JU, V )JX for any X ∈ X (M). The operators R(U, V ) and R(U, V ) will be treated as derivations of the tensor algebra on M in the usual sense. For instance, if T is an (0, k)-tensor field, then R(U, V )T , R(U, V )T are the (0, k)-tensor fields such that (R(U, V )T )(X1, . . . , Xk) = − ∑ s T (X1, . . . , Xs−1,R(U, V )Xs, Xs+1, . . . , Xk), (R(U, V )T )(X1, . . . , Xk) = − ∑ s T (X1, . . . , Xs−1,R (U, V )Xs, Xs+1, . . . , Xk). For an (0, k)-tensor field T , define (0, k + 2)-tensor fields R · T , R · T by (R · T )(U, V,X1, . . . , Xk) = (R(U, V ) · T )(X1, . . . , Xk) (R · T )(U, V,X1, . . . , Xk) = (R (U, V ) · T )(X1, . . . , Xk). Let us call an (0, k)-tensor field T on M to be • semisymmetric if R · T = 0; • holomorphically pseudosymmetric if there exists a function f (called the structure function) on M such that R · T = fR · T . A Kählerian manifold will be called • semisymmetric (resp., Ricci-semisymmetric) if its Riemann (resp., Ricci) curvature tensor is semisymmetric; • holomorphically pseudosymmetric (resp., Ricci-pseudosymmetric) if its Riemann (resp., Ricci) curvature tensor is holomorphically pseudosymmetric.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cohomology of Compact Hyperkähler Manifolds and Its Applications

This article contains a compression of results from [V], with most proofs omitted. We prove that every two points of the connected moduli space of holomorphically symplectic manifolds can be connected with so-called “twistor lines” – projective lines holomorphically embedded to the moduli space and corresponding to the hyperkähler structures. This has interesting implications for the geometry o...

متن کامل

Cohomology of Compact Hyperkk Ahler... (applications) Cohomology of Compact Hyperkk Ahler Manifolds and Its Applications

This article contains a compression of results from V], with most proofs omitted. We prove that every two points of the connected moduli space of holomorphically symplectic manifolds can be connected with so-called \twistor lines" { pro-jective lines holomorphically embedded to the moduli space and corresponding to the hyperkk ahler structures. This has interesting implications for the geometry...

متن کامل

Period Maps and Cohomology Cohomology of Compact Hyperkk Ahler Manifolds

Let M be a compact simply connected hy-perkk ahler (or holomorphically symplectic) manifold, dim H 2 (M) = n. Assume that M is not a product of hyperkk ahler manifolds. We prove that the Lie algebra

متن کامل

Representations of Fundamental Groups of Compact Kähler Manifolds in Solvable Matrix Groups

In the paper we prove a factorization theorem for representations of fundamental groups of compact Kähler manifolds (Kähler groups) into solvable matrix groups. We apply this result to prove that the universal covering of a compact Kähler manifold with a residually solvable fundamental group is holomorphically convex.

متن کامل

Pseudosymmetric and Weyl-pseudosymmetric (κ, Μ)-contact Metric Manifolds

In this paper we classify pseudosymmetric and Ricci-pseudosymmetric (κ, μ)-contact metric manifolds in the sense of Deszcz. Next we characterize Weyl-pseudosymmetric (κ, μ)-contact metric manifolds.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009